

Date: 12-11-2024

 Dept. No.

Max. : 100 Marks

Time: 01:00 pm-04:00 pm

SECTION A – K1 (CO1)

 1. **Answer ALL the questions (5 x 1 = 5)**

1. **Answer the following**

a) Define the radius of convergence of the power series $\sum_{n=0}^{\infty} a_n z^n$.

b) What are the zeros of an analytic function $f(z) = \frac{(z-2)^3(z+i)^3}{(z-3)^4}$ and mention their multiplicities?

c) What do you mean by a closed rectifiable curve γ_0 in G homotopic to zero?

d) Define a convex set with an example.

e) State Functional equation.

SECTION A – K2 (CO1)

 2. **Answer ALL the questions (5 x 1 = 5)**

2. **Choose the correct answer for the following**

a) The radius of convergence of the power series $\sum_{n=0}^{\infty} \frac{z^n}{n!}$

(i) 1 (ii) 2 (iii) n (iv) ∞

b) If $p(z) = z^n + a_{n-1} z^{n-1} + \dots + a_0$ then $\lim_{n \rightarrow \infty} p(z) = \underline{z}$

(i) 0 (ii) 1 (iii) ∞ (iv) n

c) If $f: G \rightarrow C$ is an analytic function and γ is a closed rectifiable curve such that $\gamma \neq 0$ then $\int_{\gamma} f = \underline{z}$

(i) nonzero (ii) 2 (iii) 1 (iv) 0

d) $E_0(z) = \underline{z}$

(i) 1 (ii) $1-z$ (iii) $1+z$ (iv) $1+2z$

e) If $|z| \leq 1$ and $p \geq 0$ then $|1 - E_p(z)| \leq$

(i) $|z|^{p-1}$ (ii) $|z|^{p+1}$ (iii) $|z|^p$

(iv) $|z|^{p+2}$

SECTION B – K3 (CO2)

 3. **Answer any THREE of the following (3 x 10 = 30)**

3. Prove $\int_0^{2\pi} \frac{e^{is}}{e^{is} - z} ds = 2\pi$ if $|z| < 1$.

4. State and prove the fundamental theorem of algebra.

5. Let $\Re z_n > -1$. Prove that the series $\sum \log(1+z_n)$ converges absolutely if and only if the series $\sum z_n$

	converges absolutely.
6.	Prove that a differentiable function on $[a, b]$ is convex if and only if f' is increasing.
7.	State and prove the Gauss's formula.

SECTION C – K4 (CO3)

	Answer any TWO of the following	(2 x 12.5 = 25)
8.	State and prove Cauchy's integral formula and apply to evaluate $\int_{\gamma} \frac{1}{z-a} dz$ where $\gamma = a + \Re^i t, 0 \leq t \leq 2\pi$.	
9.	State and prove Morera's theorem.	
10.	State and prove Schwarz's lemma.	
11.	If γ_0 and γ_1 are two closed rectifiable curves in G such that $\gamma_0 \sim \gamma_1$ explain how $\int_{\gamma_0} f = \int_{\gamma_1} f$.	

SECTION D – K5 (CO4)

	Answer any ONE of the following	(1 x 15 = 15)
12.	State the characterization of gamma function and defend it.	
13.	Prove the Weierstrass factorization theorem and evaluate the factorization of sine function.	

SECTION E – K6 (CO5)

	Answer any ONE of the following	(1 x 20 = 20)
14.	Defend Goursat's theorem.	
15.	<p>Let G be a simply connected region which is not the plane and let $a \in G$. Construct a unique analytic function $f: G \rightarrow \mathbb{C}$ having the properties:</p> <p>(a) $f(a) = 0$ and $f'(a) > 0$ (b) f is one-one (c) $f(G) = \{z: z < 1\}$</p>	

\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$